Deemed to be Universit 3 of the UGC Act. 1956

csantona: 557 SUHUOL OF ElEGTBﬂNIGS ENGINEERING

Digital IC

DESIGN

RTL to GDS flow using EDA Tools

SUMMER TRAINING 2025

COURSE
O0BJECTIVE

This course provides a comprehensive exploration of RISC-V core
design and FPGA implementation. Students will learn to translate
architectural specifications into synthesizable hardware using
HDLs like Verilog. Practical exercises will cover memory interfacing
and peripheral integration. By the end, students will be able to
design, simulate, and deploy a functional RISC-V core on an FPGA
platform, gaining valuable skills In embedded system
development and hardware acceleration. The course emphasizes
hands-on experience and real-world application of RISC-V
principles.

(v CERTIFICATES ON COMPLETION
(¥ HYBRID MODE TRAINING
(@ 20 HOURS | 40+ PROJECT

GOURSE

QUTCOME

RISC-V Implementation

Students will
successfully develop
and demonstrate @
working RISC-V
processor core on dn
FPGA, capable of
executing basic
programs and
interacting with
peripherals

COURSE
FEE

INSTRUCTORS

e Dr. Jitendra Kr. Das
e Dr. Sarita Nanda
 Dr. Subir Kr. Maity

Verilog Proficiency

Students will
demonstrate
proficiency in using
hardware description
languages (Verilog)
and FPGA synthesis
tools to translate
architectural designs
Into iImplementable
hardware.

System Integration

Students will be able
to integrate a RISC-V
core with memory
and peripherals,
debug hardware and
software interactions,
and analyze system
performance on an
FPGA platform.

Other Affiliation | Rs 5000/-*

*No Fooding & Lodging

JODULE DESCRIPTOR FOR THE COURSE

Fundamentals of Computer Architecture and RISC-V

Von Neumann Architecture, CPU, Memory, 1/O, Instruction Set Architecture
(ISA), Register, Memory Addressing. History and Philosophy of RISC-V,
Advantages of RISC-V, RISC-V Specifications (Base ISA, Extensions), RV32|,
RV64l, and other common extensions.

RISC-V Base Integer Instruction Set (RV32l): Register Conventions,
Arithmetic Instructions (ADD, SUB, MUL, DIV), Logical Instructions (AND, OR,
XOR), Shift Instructions (SLL, SRL, SRA), Immediate Instructions.

Memory access instructions: Load (LB, LH, LW), store (SB, SH, SW),
addressing modes.

Control flow instructions: branch instructions (BEQ, BNE, BLT, BGE), jump
instructions (JAL, JALR), basic assembly programs (e.g., Sum of Numbers,
Factorial), intro to assembly language calling conventions.

Verilog HDL fundamentals: Introduction to Verilog HDL, gate level, data flow
and behavioral modeling style, and arithmetic and logical operators In
Verilog.

Concatenation operator and ternary operator: Procedural block, if-else,
and case statement in Verilog. Memory design (RAM) in Verilog.

Design of finite state machines (FSM): (Mealy type) with an example (3-bit
sequence detector). Implementation of a simple 8-bit ALU using dataflow
and behavioral modeling style and its testing using a testbench.

Implementing a Basic RISC-V Core in Verilog and testing

Basic Core Architecture (Fetch - Decode - Execute -» Writeback):
Designing the Instruction Memory. Implementing a Basic ALU for Addition &
logical operations, Implementing a simple RISC-V core Iin Verilog, and
testing it with a basic addition/subtraction instruction. and modify the core
to support logical operations. Connecting Instruction Memory to the Core.
Simulating the core with a test bench. Load the hex file into the Verilog Core
and verify the execution of an assembly program in Verilog. Modify the
RISC-V Verilog core and testbench to store the output in memory and verify
correctness.

Introduction to RISC-V GCC toolchain: Toolchain setup, writing a C code,
and generating a HEX file. Loading the HEX file into the generated RISC-V
Verilog core and testing it with a testbench. Sample program: addition of a
series of numbers, factorial, multiplication using functions.

Adding GPIO peripheral to RISC-V core: Adding LEDs and switches to the
RISC-V core. Test the core for GPIO operation. FPGA implementation of the
core with GPIO support.

