Proposal for Short Term Training On FPGA based Digital System Design Date of commencement: 20th June 2024

The School of Electronics Engineering going to organise a 4 weeks summer training program on FPGA based Digital System Design using Verilog HDL. A Hardware Description Language (HDL) called Verilog is used to simulate and create digital systems. Verilog is used in electronic design for test analysis, timing analysis, logic synthesis, and simulation-based verification. The focus of this course is on developing a thorough understanding of Verilog concepts. The course blends informative lectures with hands-on activities to help students remember fundamental ideas.

Duration: 4 weeks(40hr) + Project
Course Fee: Rs. 5000/-(inclusive all taxes)
Eligibility: B. TECH. 2nd Year or 3rd year
Mode: Hybrid Mode (Theory will be in online mode and hands-on in offline mode in university campus)

Course objectives:

To learn IEEE standard Verilog HDL and its different modeling styles to model digital circuits.

□To apprehend the concept of delays, test benches and timing checks in digital circuits.

To understand the fundamentals of FPGAs.

□To perceive the essentials of FPGA based implementation of digital circuits.

Course Outcomes:

The students will be able to:

Design, simulate and synthesize the digital circuits with Verilog.

□ Design combinational and sequential logic circuits.

□Synthesize logic and state machines using automatic logic synthesis program.

□Run a timing and Power calculations

□Use enhanced Verilog file I/O capability.

Week-1:

Introduction to VLSI Design and Verilog HDL:

□VLSI and ASIC Design Flow,

□Basic Concepts of Verilog HDL,

Modelling: - data flow modelling, Gate level Modelling, Structural Modelling, Behavioural Modelling.

Test bench and writing a testbench to verify a design

Week-2

Combination circuit and sequential circuit design using Verilog and their verification.

Multiplexed seven segment display implementations in FPGA and verify it.

Interfacing Temperature sensor and displaying its value using FPGA.

Week-3

Design and implementation of 8-bit signed multiplier using Radix-4 Booth algorithm.

Implementation of 5-tap FIR filter with ADC and DAC in FPGA.

Implementation of PWM based stepper motor controller in FPGA.

Week-4:

□ Timing verification of a Logic in FPGA.

FPGA Debugging using Integrated Logic Analyser.

□RTL to layout using Opensource tools.

□A small prject

Feedback collection

Note:

 \Box The seats are limited and students are allowed to participate on first come first serve basis.

□Minimum attendance of 75% is required to get soft copy of certificate.

Instructor:

Dr. J. K. Das

Associate Professor, School of Electronics Engineering, Kalinga Institute of Industrial Technology (KIIT)-DU.